Nuprl Lemma : un-half-squash-test

[P,Q,R:ℙ].  (((P ∧ R)  Q)  ⇃(R)  half-squash-stable(Q)  ⇃(P)  True  {Q ∧ ⇃(P) ∧ (∀n:ℕQ)})


Proof




Definitions occuring in Statement :  half-squash-stable: half-squash-stable(P) quotient: x,y:A//B[x; y] nat: uall: [x:A]. B[x] prop: guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q true: True
Definitions unfolded in proof :  cand: c∧ B half-squash-stable: half-squash-stable(P) all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q prop: member: t ∈ T guard: {T} implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  trivial-quotient-true half-squash-stable_wf implies-quotient-true half-squash-stable__all half-squash-stable__half-squash nat_wf all_wf equiv_rel_true true_wf quotient_wf half-squash-stable__and
Rules used in proof :  independent_pairFormation universeEquality functionEquality promote_hyp cumulativity independent_functionElimination independent_isectElimination hypothesis lambdaEquality because_Cache productEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P,Q,R:\mBbbP{}].
    (((P  \mwedge{}  R)  {}\mRightarrow{}  Q)  {}\mRightarrow{}  \00D9(R)  {}\mRightarrow{}  half-squash-stable(Q)  {}\mRightarrow{}  \00D9(P)  {}\mRightarrow{}  True  {}\mRightarrow{}  \{Q  \mwedge{}  \00D9(P)  \mwedge{}  (\mforall{}n:\mBbbN{}.  Q)\})



Date html generated: 2017_09_29-PM-05_48_13
Last ObjectModification: 2017_08_30-AM-11_48_12

Theory : quot_1


Home Index