Nuprl Lemma : order_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ]. ((∀x,y:T. (R[x;y]
⇐⇒ R'[x;y]))
⇒ (Order(T;x,y.R[x;y])
⇐⇒ Order(T;x,y.R'[x;y])))
Proof
Definitions occuring in Statement :
order: Order(T;x,y.R[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
order: Order(T;x,y.R[x; y])
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
Lemmas referenced :
order_wf,
all_wf,
iff_wf,
anti_sym_wf,
refl_functionality_wrt_iff,
trans_functionality_wrt_iff,
iff_weakening_uiff,
anti_sym_functionality_wrt_iff
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
lambdaFormation,
independent_pairFormation,
sqequalHypSubstitution,
cut,
introduction,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
hypothesis,
Error :inhabitedIsType,
Error :functionIsType,
Error :universeIsType,
universeEquality,
because_Cache,
productElimination,
independent_functionElimination,
dependent_functionElimination,
promote_hyp,
independent_isectElimination
Latex:
\mforall{}[T:Type]. \mforall{}[R,R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
((\mforall{}x,y:T. (R[x;y] \mLeftarrow{}{}\mRightarrow{} R'[x;y])) {}\mRightarrow{} (Order(T;x,y.R[x;y]) \mLeftarrow{}{}\mRightarrow{} Order(T;x,y.R'[x;y])))
Date html generated:
2019_06_20-PM-00_29_30
Last ObjectModification:
2018_09_26-AM-11_53_43
Theory : rel_1
Home
Index