Nuprl Lemma : order_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y]))  (Order(T;x,y.R[x;y]) ⇐⇒ Order(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  order: Order(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q order: Order(T;x,y.R[x; y]) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  order_wf all_wf iff_wf anti_sym_wf refl_functionality_wrt_iff trans_functionality_wrt_iff iff_weakening_uiff anti_sym_functionality_wrt_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality because_Cache productElimination independent_functionElimination dependent_functionElimination promote_hyp independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (Order(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Order(T;x,y.R'[x;y])))



Date html generated: 2019_06_20-PM-00_29_30
Last ObjectModification: 2018_09_26-AM-11_53_43

Theory : rel_1


Home Index