Nuprl Lemma : least-equiv-cases

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀a,b:A.
    ((least-equiv(A;R) b)
     ((a b ∈ A) ∨ ((R b) ∨ (R a)) ∨ (∃c:A. (((R b) ∨ (R c)) ∧ (least-equiv(A;R) c)))))


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q sym: Sym(T;x,y.E[x; y]) least-equiv: least-equiv(A;R) transitive-reflexive-closure: R^* or: P ∨ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] infix_ap: y exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  least-equiv-is-equiv least-equiv_wf or_wf exists_wf subtype_rel_self equal_wf transitive-closure-cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality applyEquality hypothesis functionEquality cumulativity universeEquality productElimination dependent_functionElimination independent_functionElimination sqequalRule unionElimination inlFormation equalitySymmetry lambdaEquality productEquality instantiate inrFormation dependent_pairFormation independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a,b:A.
        ((least-equiv(A;R)  a  b)
        {}\mRightarrow{}  ((a  =  b)  \mvee{}  ((R  a  b)  \mvee{}  (R  b  a))  \mvee{}  (\mexists{}c:A.  (((R  c  b)  \mvee{}  (R  b  c))  \mwedge{}  (least-equiv(A;R)  a  c)))))



Date html generated: 2018_05_21-PM-00_52_02
Last ObjectModification: 2018_05_04-AM-00_45_50

Theory : relations2


Home Index