Nuprl Lemma : rel_plus-weak-TI

T:Type. ∀R:T ⟶ T ⟶ ℙ.  (∀Q:T ⟶ ℙweak-TI(T;x,y.R[x;y];x.Q[x]) ⇐⇒ ∀Q:T ⟶ ℙweak-TI(T;x,y.R+ y;x.Q[x]))


Proof




Definitions occuring in Statement :  rel_plus: R+ weak-TI: weak-TI(T;x,y.R[x; y];t.Q[t]) prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B weak-TI: weak-TI(T;x,y.R[x; y];t.Q[t]) cand: c∧ B guard: {T} infix_ap: y exists: x:A. B[x] or: P ∨ Q
Lemmas referenced :  all_wf weak-TI_wf rel_plus_wf rel_plus_iff2 rel-star-iff-rel-plus and_wf equal_wf rel-rel-plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation functionEquality cumulativity hypothesisEquality universeEquality cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis because_Cache dependent_functionElimination productEquality independent_functionElimination productElimination unionElimination dependent_set_memberEquality setElimination rename setEquality equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (\mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  weak-TI(T;x,y.R[x;y];x.Q[x])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  weak-TI(T;x,y.R\msupplus{}  x  y;x.Q[x]))



Date html generated: 2016_10_21-AM-10_50_06
Last ObjectModification: 2016_07_12-AM-05_54_17

Theory : relations2


Home Index