Nuprl Lemma : rel-star-iff-rel-plus
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x (R^*) y 
⇐⇒ (x R+ y) ∨ (x = y ∈ T))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rel_plus: R+
, 
rel_star: R^*
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
rel_exp: R^n
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
top: Top
, 
true: True
, 
subtract: n - m
Lemmas referenced : 
exists_wf, 
nat_wf, 
rel_exp_wf, 
false_wf, 
le_wf, 
or_wf, 
nat_plus_wf, 
nat_plus_subtype_nat, 
equal_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
unionElimination, 
dependent_pairFormation, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
instantiate, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
inlFormation, 
voidElimination, 
addEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_star(T;  R)  y  \mLeftarrow{}{}\mRightarrow{}  (x  R\msupplus{}  y)  \mvee{}  (x  =  y))
Date html generated:
2016_05_14-PM-03_53_44
Last ObjectModification:
2015_12_26-PM-06_56_56
Theory : relations2
Home
Index