Nuprl Lemma : rel-star-iff-rel-plus
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀x,y:T. (x (R^*) y
⇐⇒ (x R+ y) ∨ (x = y ∈ T))
Proof
Definitions occuring in Statement :
rel_plus: R+
,
rel_star: R^*
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
rel_plus: R+
,
rel_star: R^*
,
infix_ap: x f y
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
rel_exp: R^n
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
btrue: tt
,
decidable: Dec(P)
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
nat_plus: ℕ+
,
uiff: uiff(P;Q)
,
top: Top
,
true: True
,
subtract: n - m
Lemmas referenced :
exists_wf,
nat_wf,
rel_exp_wf,
false_wf,
le_wf,
or_wf,
nat_plus_wf,
nat_plus_subtype_nat,
equal_wf,
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
decidable__lt,
not-lt-2,
not-equal-2,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
condition-implies-le,
add-commutes,
minus-add,
minus-zero,
less_than_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
independent_pairFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
lemma_by_obid,
isectElimination,
hypothesis,
lambdaEquality,
applyEquality,
hypothesisEquality,
unionElimination,
dependent_pairFormation,
because_Cache,
dependent_set_memberEquality,
natural_numberEquality,
functionEquality,
cumulativity,
universeEquality,
dependent_functionElimination,
setElimination,
rename,
instantiate,
intEquality,
independent_isectElimination,
independent_functionElimination,
inlFormation,
voidElimination,
addEquality,
isect_memberEquality,
voidEquality,
minusEquality,
equalityTransitivity,
equalitySymmetry,
inrFormation
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}x,y:T. (x rel\_star(T; R) y \mLeftarrow{}{}\mRightarrow{} (x R\msupplus{} y) \mvee{} (x = y))
Date html generated:
2016_05_14-PM-03_53_44
Last ObjectModification:
2015_12_26-PM-06_56_56
Theory : relations2
Home
Index