Nuprl Lemma : baseof_subtype_base

[T:Type]. (baseof(T) ⊆Base)


Proof




Definitions occuring in Statement :  baseof: baseof(T) subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T baseof: baseof(T) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: so_apply: x[s] uimplies: supposing a exists: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  isect_subtype_base unit_wf base_wf equal_wf it_wf subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesis lambdaEquality hypothesisEquality equalityTransitivity equalitySymmetry because_Cache lambdaFormation unionElimination dependent_functionElimination independent_functionElimination independent_isectElimination dependent_pairFormation inrEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  (baseof(T)  \msubseteq{}r  Base)



Date html generated: 2019_06_20-AM-11_19_30
Last ObjectModification: 2018_08_21-PM-01_52_34

Theory : subtype_0


Home Index