Nuprl Lemma : baseof_subtype_base
∀[T:Type]. (baseof(T) ⊆r Base)
Proof
Definitions occuring in Statement : 
baseof: baseof(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
baseof: baseof(T)
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
isect_subtype_base, 
unit_wf, 
base_wf, 
equal_wf, 
it_wf, 
subtype_rel_self, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
inrEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  (baseof(T)  \msubseteq{}r  Base)
Date html generated:
2019_06_20-AM-11_19_30
Last ObjectModification:
2018_08_21-PM-01_52_34
Theory : subtype_0
Home
Index