Nuprl Lemma : function-mono

A:Type. ∀B:A ⟶ Type.  (((A ⊆Base) ∧ (∀a:A. mono(B[a])) ∧ (↓∃a:A. value-type(B[a])))  mono(a:A ⟶ B[a]))


Proof




Definitions occuring in Statement :  mono: mono(T) value-type: value-type(T) subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q mono: mono(T) squash: T is-above: is-above(T;a;z) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B subtype_rel: A ⊆B true: True
Lemmas referenced :  is-above_wf base_wf subtype_rel_wf all_wf mono_wf squash_wf exists_wf value-type_wf and_wf equal_wf has-value_wf_base is-exception_wf equal-wf-base-T sqle_wf_base true_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename cut imageElimination hypothesis introduction extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality applyEquality functionExtensionality productEquality sqequalRule lambdaEquality universeEquality dependent_functionElimination pointwiseFunctionality baseApply closedConclusion baseClosed independent_functionElimination dependent_pairFormation equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity applyLambdaEquality setElimination divergentSqle sqleRule sqleReflexivity because_Cache hyp_replacement natural_numberEquality imageMemberEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.
    (((A  \msubseteq{}r  Base)  \mwedge{}  (\mforall{}a:A.  mono(B[a]))  \mwedge{}  (\mdownarrow{}\mexists{}a:A.  value-type(B[a])))  {}\mRightarrow{}  mono(a:A  {}\mrightarrow{}  B[a]))



Date html generated: 2017_04_14-AM-07_37_21
Last ObjectModification: 2017_02_27-PM-03_09_39

Theory : subtype_1


Home Index