Nuprl Lemma : mobj-cases
∀[S:MutualRectypeSpec]. ∀[P:mobj(S) ⟶ TYPE].
  ((∀k:mKinds. ∀lbl:{lbl:Atom| 0 < ||mrec-spec(S;lbl;k)||} .
    ∀t:tuple-type(prec-arg-types(lbl,p.mrec-spec(S;lbl;p);k;lbl)).
      P[<k, mk-prec(lbl;t)>])
  
⇒ (∀x:mobj(S). P[x]))
Proof
Definitions occuring in Statement : 
mobj: mobj(L)
, 
mkinds: mKinds
, 
mrec-spec: mrec-spec(L;lbl;p)
, 
mrec_spec: MutualRectypeSpec
, 
mk-prec: mk-prec(lbl;x)
, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
natural_number: $n
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
mkinds: mKinds
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
mrec: mrec(L;i)
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
mobj_wf, 
mrec_spec_wf, 
mobj-sq, 
mobj-kind_wf, 
mobj-label_wf, 
mobj-tuple_wf, 
mkinds_wf, 
istype-atom, 
istype-less_than, 
length_wf, 
mrec-spec_wf, 
tuple-type_wf, 
prec-arg-types_wf, 
mk-prec_wf, 
subtype_rel_self, 
mrec_wf, 
mobj-ext, 
ext-eq_inversion, 
subtype_rel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :functionIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :TYPEIsType, 
Error :lambdaFormation_alt, 
sqequalRule, 
dependent_functionElimination, 
Error :setIsType, 
natural_numberEquality, 
instantiate, 
unionEquality, 
cumulativity, 
atomEquality, 
universeEquality, 
setElimination, 
rename, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
Error :TYPEMemberIsType, 
applyEquality, 
Error :dependent_pairEquality_alt, 
productEquality, 
independent_isectElimination
Latex:
\mforall{}[S:MutualRectypeSpec].  \mforall{}[P:mobj(S)  {}\mrightarrow{}  TYPE].
    ((\mforall{}k:mKinds.  \mforall{}lbl:\{lbl:Atom|  0  <  ||mrec-spec(S;lbl;k)||\}  .
        \mforall{}t:tuple-type(prec-arg-types(lbl,p.mrec-spec(S;lbl;p);k;lbl)).
            P[<k,  mk-prec(lbl;t)>])
    {}\mRightarrow{}  (\mforall{}x:mobj(S).  P[x]))
Date html generated:
2019_06_20-PM-02_15_38
Last ObjectModification:
2019_03_12-PM-11_13_04
Theory : tuples
Home
Index