Nuprl Lemma : pcorec-ext

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)].
  pcorec(lbl,p.a[lbl;p]) ≡ ptuple(lbl,p.a[lbl;p];pcorec(lbl,p.a[lbl;p]))


Proof




Definitions occuring in Statement :  pcorec: pcorec(lbl,p.a[lbl; p]) ptuple: ptuple(lbl,p.a[lbl; p];X) list: List ext-family: F ≡ G uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcorec: pcorec(lbl,p.a[lbl; p]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B ext-family: F ≡ G all: x:A. B[x] ext-eq: A ≡ B subtype_rel: A ⊆B
Lemmas referenced :  corec-family-ext ptuple_wf istype-atom ptuple-continuous ptuple-monotone list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  sqequalRule applyEquality Error :universeIsType,  hypothesis Error :functionIsType,  Error :inhabitedIsType,  independent_isectElimination independent_pairFormation because_Cache dependent_functionElimination productElimination independent_pairEquality axiomEquality Error :functionIsTypeImplies,  instantiate unionEquality cumulativity universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    pcorec(lbl,p.a[lbl;p])  \mequiv{}  ptuple(lbl,p.a[lbl;p];pcorec(lbl,p.a[lbl;p]))



Date html generated: 2019_06_20-PM-02_04_07
Last ObjectModification: 2019_02_22-PM-03_29_36

Theory : tuples


Home Index