Nuprl Lemma : prec-size_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P]. ∀[x:prec(lbl,p.a[lbl;p];i)].  (||i;x|| ∈ ℕ)


Proof




Definitions occuring in Statement :  prec-size: ||i;x|| prec: prec(lbl,p.a[lbl; p];i) list: List nat: uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prec: prec(lbl,p.a[lbl; p];i) prec-size: ||i;x|| uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  termination nat_wf set-value-type le_wf istype-int int-value-type pcorec-size_wf istype-atom prec_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesis independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality applyEquality Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  instantiate unionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];i)].
    (||i;x||  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-PM-02_04_57
Last ObjectModification: 2019_02_22-PM-06_13_33

Theory : tuples


Home Index