Nuprl Lemma : prec-tuple_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[i:P]. ∀[x:prec(lbl,p.a[lbl;p];i)].
  (prec-tuple(x) ∈ tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;prec-label(x))))
Proof
Definitions occuring in Statement : 
prec-tuple: prec-tuple(x)
, 
prec-label: prec-label(x)
, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl)
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
tuple-type: tuple-type(L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
prec-label: prec-label(x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dest-prec: dest-prec(x)
, 
prec-tuple: prec-tuple(x)
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
Lemmas referenced : 
dest-prec_wf, 
pi2_wf, 
less_than_wf, 
length_wf, 
tuple-type_wf, 
prec-arg-types_wf, 
istype-atom, 
istype-less_than, 
prec_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
atomEquality, 
natural_numberEquality, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
setElimination, 
rename, 
Error :setIsType, 
Error :universeIsType, 
Error :functionIsType
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];i)].
    (prec-tuple(x)  \mmember{}  tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;prec-label(x))))
Date html generated:
2019_06_20-PM-02_05_27
Last ObjectModification:
2019_02_28-PM-02_45_59
Theory : tuples
Home
Index