Nuprl Lemma : prec-tuple_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P]. ∀[x:prec(lbl,p.a[lbl;p];i)].
  (prec-tuple(x) ∈ tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;prec-label(x))))


Proof




Definitions occuring in Statement :  prec-tuple: prec-tuple(x) prec-label: prec-label(x) prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) prec: prec(lbl,p.a[lbl; p];i) tuple-type: tuple-type(L) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  prec-label: prec-label(x) uall: [x:A]. B[x] member: t ∈ T dest-prec: dest-prec(x) prec-tuple: prec-tuple(x) so_apply: x[s1;s2] prop: so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s]
Lemmas referenced :  dest-prec_wf pi2_wf less_than_wf length_wf tuple-type_wf prec-arg-types_wf istype-atom istype-less_than prec_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setEquality atomEquality natural_numberEquality instantiate unionEquality cumulativity universeEquality applyEquality Error :lambdaEquality_alt,  Error :inhabitedIsType,  setElimination rename Error :setIsType,  Error :universeIsType,  Error :functionIsType

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];i)].
    (prec-tuple(x)  \mmember{}  tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;prec-label(x))))



Date html generated: 2019_06_20-PM-02_05_27
Last ObjectModification: 2019_02_28-PM-02_45_59

Theory : tuples


Home Index