Nuprl Lemma : inl-inr-disjoint

[A,B:Type]. ∀[x:A]. ∀[y:B].  uiff((inl x) (inr ) ∈ (A B);False)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] false: False inr: inr  inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} true: True prop:
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution sqequalRule applyEquality lambdaEquality unionElimination thin natural_numberEquality unionEquality hypothesisEquality hypothesis instantiate lemma_by_obid isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp because_Cache inlEquality inrEquality productElimination independent_pairEquality isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A].  \mforall{}[y:B].    uiff((inl  x)  =  (inr  y  );False)



Date html generated: 2016_05_13-PM-03_20_15
Last ObjectModification: 2015_12_26-AM-09_10_58

Theory : union


Home Index