Nuprl Lemma : FormExists_wf2
∀[C:Type]. ∀[a:PZF-Formula(C)]. ∀[x:Atom].  (∃x. a ∈ PZF-Formula(C))
Proof
Definitions occuring in Statement : 
PZF-Formula: PZF-Formula(C), 
FormExists: ∃var. body, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
PZF-Formula: PZF-Formula(C), 
PZF-Form: PZF-Form(C), 
and: P ∧ Q, 
cand: A c∧ B, 
SafeForm: SafeForm(f), 
Form_ind: Form_ind, 
FormExists: ∃var. body, 
prop: ℙ, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
termForm: termForm(f), 
bfalse: ff, 
wfForm: wfForm(f), 
wfFormAux: wfFormAux(f), 
bnot: ¬bb, 
band: p ∧b q, 
btrue: tt, 
squash: ↓T, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True
Lemmas referenced : 
FormExists_wf, 
assert_wf, 
wfForm_wf, 
SafeForm_wf, 
termForm_wf, 
not_wf, 
PZF-Formula_wf, 
squash_wf, 
true_wf, 
bool_wf, 
wfFormAux_wf, 
iff_imp_equal_bool, 
bfalse_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
productEquality, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
hyp_replacement, 
applyEquality, 
lambdaEquality, 
imageElimination, 
independent_isectElimination, 
voidElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[C:Type].  \mforall{}[a:PZF-Formula(C)].  \mforall{}[x:Atom].    (\mexists{}x.  a  \mmember{}  PZF-Formula(C))
Date html generated:
2018_05_21-PM-11_38_25
Last ObjectModification:
2017_10_12-PM-05_18_10
Theory : PZF
Home
Index