Nuprl Lemma : SafeForm_wf
∀[C:Type]. ∀[f:Form(C)].  (SafeForm(f) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
SafeForm: SafeForm(f), 
Form: Form(C), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
SafeForm: SafeForm(f), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
prop: ℙ, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
Form_ind_wf_simple, 
top_wf, 
bool_wf, 
subtype_rel_Form, 
btrue_wf, 
eqtt_to_assert, 
PZF_safe_wf, 
cons_wf, 
nil_wf, 
equal_wf, 
Form_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
atomEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[C:Type].  \mforall{}[f:Form(C)].    (SafeForm(f)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-11_36_20
Last ObjectModification:
2017_10_12-PM-02_53_59
Theory : PZF
Home
Index