Nuprl Lemma : bag-combine-is-single-if
∀[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[bs:bag(A)]. ∀[x:B].
  ⋃x∈bs.f[x] = {x} ∈ bag(B) supposing ↓∃y:A. ((bs = {y} ∈ bag(A)) ∧ (f[y] = {x} ∈ bag(B)))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
single-bag: {x}
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
bag-combine-single-left, 
equal_wf, 
bag_wf, 
bag-combine_wf, 
squash_wf, 
exists_wf, 
single-bag_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
imageElimination, 
cut, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
equalityTransitivity, 
productEquality, 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[bs:bag(A)].  \mforall{}[x:B].
    \mcup{}x\mmember{}bs.f[x]  =  \{x\}  supposing  \mdownarrow{}\mexists{}y:A.  ((bs  =  \{y\})  \mwedge{}  (f[y]  =  \{x\}))
Date html generated:
2017_10_01-AM-08_47_40
Last ObjectModification:
2017_07_26-PM-04_32_05
Theory : bags
Home
Index