Nuprl Lemma : bag-filter-is-sub-bag
∀[T:Type]. ∀p:T ⟶ 𝔹. ∀b:bag(T).  sub-bag(T;[x∈b|p[x]];b)
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bag-filter-split, 
bag-filter_wf, 
bnot_wf, 
subtype_rel_bag, 
assert_wf, 
equal_wf, 
bag_wf, 
bag-append_wf, 
bool_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_pairFormation, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}p:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}b:bag(T).    sub-bag(T;[x\mmember{}b|p[x]];b)
Date html generated:
2016_05_15-PM-02_45_17
Last ObjectModification:
2015_12_27-AM-09_37_38
Theory : bags
Home
Index