Nuprl Lemma : bag-filter-is-sub-bag

[T:Type]. ∀p:T ⟶ 𝔹. ∀b:bag(T).  sub-bag(T;[x∈b|p[x]];b)


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-filter: [x∈b|p[x]] bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter-split bag-filter_wf bnot_wf subtype_rel_bag assert_wf equal_wf bag_wf bag-append_wf bool_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_pairFormation sqequalRule lambdaEquality applyEquality setEquality independent_isectElimination setElimination rename because_Cache equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}p:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}b:bag(T).    sub-bag(T;[x\mmember{}b|p[x]];b)



Date html generated: 2016_05_15-PM-02_45_17
Last ObjectModification: 2015_12_27-AM-09_37_38

Theory : bags


Home Index