Nuprl Lemma : bag-order_wf

T:Type. (bag-order(T) ∈ Type)


Proof




Definitions occuring in Statement :  bag-order: bag-order(T) all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bag-order: bag-order(T) uall: [x:A]. B[x] and: P ∧ Q so_lambda: λ2x.t[x] prop: iff: ⇐⇒ Q rev_implies:  Q implies:  Q gt: i > j so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  le_wf linorder_wf gt_wf less_than_wf equal_wf equal-wf-T-base iff_wf all_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule setEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache intEquality productEquality lambdaEquality applyEquality baseClosed natural_numberEquality universeEquality

Latex:
\mforall{}T:Type.  (bag-order(T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-03_11_23
Last ObjectModification: 2016_01_16-AM-08_37_23

Theory : bags


Home Index