Nuprl Lemma : bag-union-is-single-if
∀[T:Type]. ∀[x:T].  ∀bbs:bag(bag(T)). bag-union(bbs) = {x} ∈ bag(T) supposing bbs = {{x}} ∈ bag(bag(T))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
single-bag: {x}
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
bag-union-single, 
single-bag_wf, 
bag-subtype-list, 
equal_wf, 
bag_wf, 
bag-union_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
thin, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
isectElimination, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    \mforall{}bbs:bag(bag(T)).  bag-union(bbs)  =  \{x\}  supposing  bbs  =  \{\{x\}\}
Date html generated:
2016_10_25-AM-10_23_22
Last ObjectModification:
2016_07_12-AM-06_39_59
Theory : bags
Home
Index