Nuprl Lemma : bag-union-is-single-if

[T:Type]. ∀[x:T].  ∀bbs:bag(bag(T)). bag-union(bbs) {x} ∈ bag(T) supposing bbs {{x}} ∈ bag(bag(T))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) single-bag: {x} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  bag-union-single single-bag_wf bag-subtype-list equal_wf bag_wf bag-union_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis thin sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination cumulativity hypothesisEquality applyEquality because_Cache hyp_replacement equalitySymmetry Error :applyLambdaEquality,  isectElimination lambdaEquality isect_memberEquality axiomEquality equalityTransitivity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    \mforall{}bbs:bag(bag(T)).  bag-union(bbs)  =  \{x\}  supposing  bbs  =  \{\{x\}\}



Date html generated: 2016_10_25-AM-10_23_22
Last ObjectModification: 2016_07_12-AM-06_39_59

Theory : bags


Home Index