Nuprl Lemma : eq_int-wf-bar-int
∀[x,y:bar(ℤ)].  ((x =z y) ∈ bar(𝔹))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
eq_int: (i =z j)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
subtype_bar2, 
base_wf, 
int_subtype_base, 
value-type_wf, 
subtype_rel_self, 
bar-base, 
eq_int-wf-bar, 
subtype_barSqtype_base, 
int-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
inrFormation, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[x,y:bar(\mBbbZ{})].    ((x  =\msubz{}  y)  \mmember{}  bar(\mBbbB{}))
Date html generated:
2016_07_08-PM-05_18_55
Last ObjectModification:
2015_12_27-PM-05_17_10
Theory : bar!type
Home
Index