Nuprl Lemma : nat2inf-injection

Inj(ℕ;ℕ∞n.n∞)


Proof




Definitions occuring in Statement :  nat2inf: n∞ nat-inf: ℕ∞ inject: Inj(A;B;f) nat: lambda: λx.A[x]
Definitions unfolded in proof :  inject: Inj(A;B;f) all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  nat2inf-one-one equal_wf nat-inf_wf nat2inf_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution sqequalRule lemma_by_obid isectElimination thin hypothesisEquality independent_functionElimination hypothesis

Latex:
Inj(\mBbbN{};\mBbbN{}\minfty{};\mlambda{}n.n\minfty{})



Date html generated: 2016_05_15-PM-01_46_54
Last ObjectModification: 2015_12_27-AM-00_09_41

Theory : basic


Home Index