Nuprl Lemma : nat2inf-injection
Inj(ℕ;ℕ∞;λn.n∞)
Proof
Definitions occuring in Statement : 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
inject: Inj(A;B;f)
, 
nat: ℕ
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
nat2inf-one-one, 
equal_wf, 
nat-inf_wf, 
nat2inf_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis
Latex:
Inj(\mBbbN{};\mBbbN{}\minfty{};\mlambda{}n.n\minfty{})
Date html generated:
2016_05_15-PM-01_46_54
Last ObjectModification:
2015_12_27-AM-00_09_41
Theory : basic
Home
Index