Nuprl Lemma : nat2inf-one-one
∀[a,b:ℕ].  ((a∞ = b∞ ∈ ℕ∞) 
⇒ (a = b ∈ ℕ))
Proof
Definitions occuring in Statement : 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
not: ¬A
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_of_lt_int, 
less_than_wf, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
le_wf, 
equal_wf, 
nat-inf_wf, 
nat2inf_wf, 
nat_wf, 
assert_wf, 
lt_int_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
applyLambdaEquality, 
applyEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
extract_by_obid, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
because_Cache, 
axiomEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[a,b:\mBbbN{}].    ((a\minfty{}  =  b\minfty{})  {}\mRightarrow{}  (a  =  b))
Date html generated:
2017_10_01-AM-08_29_17
Last ObjectModification:
2017_07_26-PM-04_23_54
Theory : basic
Home
Index