Nuprl Lemma : nat2inf-one-one

[a,b:ℕ].  ((a∞ b∞ ∈ ℕ∞ (a b ∈ ℕ))


Proof




Definitions occuring in Statement :  nat2inf: n∞ nat-inf: ℕ∞ nat: uall: [x:A]. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q nat2inf: n∞ nat-inf: ℕ∞ uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} not: ¬A nat: uiff: uiff(P;Q) and: P ∧ Q prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base assert_of_lt_int less_than_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf equal_wf nat-inf_wf nat2inf_wf nat_wf assert_wf lt_int_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution applyLambdaEquality applyEquality setElimination thin rename hypothesisEquality hypothesis sqequalRule instantiate extract_by_obid isectElimination cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination promote_hyp unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality because_Cache axiomEquality addLevel impliesFunctionality

Latex:
\mforall{}[a,b:\mBbbN{}].    ((a\minfty{}  =  b\minfty{})  {}\mRightarrow{}  (a  =  b))



Date html generated: 2017_10_01-AM-08_29_17
Last ObjectModification: 2017_07_26-PM-04_23_54

Theory : basic


Home Index