Nuprl Lemma : type-functor-iterate_wf

[n:ℕ]. ∀[F:Functor].  (F^n ∈ Functor)


Proof




Definitions occuring in Statement :  type-functor-iterate: F^n type-functor: Functor nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-functor-iterate: F^n nat:
Lemmas referenced :  primrec_wf type-functor_wf identity-functor_wf type-functor-compose_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality lambdaEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[F:Functor].    (F\^{}n  \mmember{}  Functor)



Date html generated: 2016_05_15-PM-01_45_27
Last ObjectModification: 2015_12_27-AM-00_10_21

Theory : basic


Home Index