Nuprl Lemma : type-functor-iterate_wf
∀[n:ℕ]. ∀[F:Functor].  (F^n ∈ Functor)
Proof
Definitions occuring in Statement : 
type-functor-iterate: F^n
, 
type-functor: Functor
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-functor-iterate: F^n
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
type-functor_wf, 
identity-functor_wf, 
type-functor-compose_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[F:Functor].    (F\^{}n  \mmember{}  Functor)
Date html generated:
2016_05_15-PM-01_45_27
Last ObjectModification:
2015_12_27-AM-00_10_21
Theory : basic
Home
Index