Nuprl Lemma : type-functor-compose_wf

[F,G:Functor].  (F G ∈ Functor)


Proof




Definitions occuring in Statement :  type-functor-compose: q type-functor: Functor uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-functor: Functor type-functor-compose: q and: P ∧ Q compose: g subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop: cand: c∧ B squash: T label: ...$L... t true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  equal_wf squash_wf true_wf and_wf iff_weakening_equal all_wf equal-wf-T-base isect_subtype_rel_trivial subtype_rel_wf type-functor_wf subtype_rel_dep_function subtype_rel_weakening ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberEquality dependent_pairEquality lambdaEquality applyEquality because_Cache cumulativity hypothesisEquality isect_memberEquality isectElimination functionExtensionality universeEquality equalityTransitivity equalitySymmetry hypothesis isectEquality functionEquality lambdaFormation instantiate introduction extract_by_obid dependent_functionElimination independent_functionElimination imageElimination independent_pairFormation applyLambdaEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productEquality dependent_pairFormation

Latex:
\mforall{}[F,G:Functor].    (F  o  G  \mmember{}  Functor)



Date html generated: 2017_10_01-AM-08_28_46
Last ObjectModification: 2017_07_26-PM-04_23_40

Theory : basic


Home Index