Nuprl Lemma : dep-isect-value-type
∀A:Type. ∀B:A ⟶ Type.  ((value-type(A) ∨ (∀a:A. value-type(B[a]))) 
⇒ value-type(a:A ⋂ B[a]))
Proof
Definitions occuring in Statement : 
dep-isect: x:A ⋂ B[x]
, 
value-type: value-type(T)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
value-type: value-type(T)
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
prop: ℙ
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
sq_stable__has-value, 
dep-isect_wf, 
equal_wf, 
equal-wf-base, 
base_wf, 
or_wf, 
value-type_wf, 
all_wf, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
instantiate, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
functionEquality, 
universeEquality, 
dependentIntersectionElimination, 
unionElimination, 
independent_isectElimination
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((value-type(A)  \mvee{}  (\mforall{}a:A.  value-type(B[a])))  {}\mRightarrow{}  value-type(a:A  \mcap{}  B[a]))
Date html generated:
2017_10_01-AM-08_39_18
Last ObjectModification:
2017_07_26-PM-04_27_26
Theory : dependent!intersection
Home
Index