Nuprl Lemma : dl_forces_wf

[K:dl_KS]. ∀[a:Prop]. ∀[s:worlds(K)]. ∀[pos:𝔹].  (dl_forces(K;pos;a;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  dl_forces: dl_forces(K;pos;a;s) dl_KS: dl_KS worlds: worlds(k) dl-prop: Prop bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B dl_forces: dl_forces(K;pos;a;s) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] so_lambda: so_lambda4 exists: x:A. B[x] so_apply: x[s1;s2;s3;s4] or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q ifthenelse: if then else fi  eq_atom: =a y dl-kind: dl-kind(d) mobj-kind: mobj-kind(x) pi1: fst(t) dl-prop-obj: prop(x) bfalse: ff
Lemmas referenced :  dl_KS_wf dl-prop_wf dl_KS_subtype bool_wf subtype-TYPE worlds_wf dl-ind_wf_definition KrRel_wf atmFrc_prog_wf istype-nat subtype_rel_self dl-prog_wf rel_star_wf btrue_wf equal_wf atmFrc_prop_wf ifthenelse_wf false_wf true_wf bfalse_wf dl-prop-obj_wf
Rules used in proof :  universeIsType instantiate universeEquality sqequalRule hypothesis because_Cache applyEquality hypothesisEquality cumulativity functionEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality_alt productEquality inhabitedIsType functionIsType unionEquality dependent_functionElimination

Latex:
\mforall{}[K:dl\_KS].  \mforall{}[a:Prop].  \mforall{}[s:worlds(K)].  \mforall{}[pos:\mBbbB{}].    (dl\_forces(K;pos;a;s)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-09_01_48
Last ObjectModification: 2020_01_17-PM-02_25_04

Theory : dynamic!logic


Home Index