Nuprl Lemma : is-list-prop2

[T:Type]. ∀[t:T List].  (is-list(t))↓


Proof




Definitions occuring in Statement :  is-list: is-list(t) list: List has-value: (a)↓ uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a bool: 𝔹 so_apply: x[s] implies:  Q is-list: is-list(t) has-value: (a)↓ nil: [] it: btrue: tt all: x:A. B[x] cons: [a b] pi2: snd(t) prop: list: List
Lemmas referenced :  is-list_wf is-exception_wf has-value_wf_base list_wf unit_wf2 union-value-type bool_wf has-value_wf-partial list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_isectElimination because_Cache cumulativity independent_functionElimination divergentSqle sqleReflexivity baseClosed lambdaFormation rename setElimination dependent_functionElimination axiomSqleEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T  List].    (is-list(t))\mdownarrow{}



Date html generated: 2016_05_15-PM-10_07_40
Last ObjectModification: 2016_01_16-PM-04_09_47

Theory : eval!all


Home Index