Nuprl Lemma : is-list-prop2
∀[T:Type]. ∀[t:T List].  (is-list(t))↓
Proof
Definitions occuring in Statement : 
is-list: is-list(t)
, 
list: T List
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
is-list: is-list(t)
, 
has-value: (a)↓
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
all: ∀x:A. B[x]
, 
cons: [a / b]
, 
pi2: snd(t)
, 
prop: ℙ
, 
list: T List
Lemmas referenced : 
is-list_wf, 
is-exception_wf, 
has-value_wf_base, 
list_wf, 
unit_wf2, 
union-value-type, 
bool_wf, 
has-value_wf-partial, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
cumulativity, 
independent_functionElimination, 
divergentSqle, 
sqleReflexivity, 
baseClosed, 
lambdaFormation, 
rename, 
setElimination, 
dependent_functionElimination, 
axiomSqleEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:T  List].    (is-list(t))\mdownarrow{}
Date html generated:
2016_05_15-PM-10_07_40
Last ObjectModification:
2016_01_16-PM-04_09_47
Theory : eval!all
Home
Index