Nuprl Lemma : length-in-prop-if-co-list

[T:Type]. ∀[t:colist(T)].  (∃n:ℕ(||t|| n ∈ partial(ℤ)) ∈ ℙ)


Proof




Definitions occuring in Statement :  length: ||as|| colist: colist(T) partial: partial(T) nat: uall: [x:A]. B[x] prop: exists: x:A. B[x] member: t ∈ T int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] uimplies: supposing a
Lemmas referenced :  exists_wf nat_wf equal_wf partial_wf length-in-bar-int-if-co-list subtype_rel_set le_wf istype-int inclusion-partial int-value-type colist_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality_alt intEquality hypothesisEquality applyEquality because_Cache natural_numberEquality independent_isectElimination universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (\mexists{}n:\mBbbN{}.  (||t||  =  n)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-AM-11_38_19
Last ObjectModification: 2018_10_11-PM-03_19_39

Theory : eval!all


Home Index