Nuprl Lemma : length-in-prop-if-co-list
∀[T:Type]. ∀[t:colist(T)].  (∃n:ℕ. (||t|| = n ∈ partial(ℤ)) ∈ ℙ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
colist: colist(T)
, 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
exists_wf, 
nat_wf, 
equal_wf, 
partial_wf, 
length-in-bar-int-if-co-list, 
subtype_rel_set, 
le_wf, 
istype-int, 
inclusion-partial, 
int-value-type, 
colist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
intEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (\mexists{}n:\mBbbN{}.  (||t||  =  n)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-AM-11_38_19
Last ObjectModification:
2018_10_11-PM-03_19_39
Theory : eval!all
Home
Index