Nuprl Lemma : product-unit-disjoint

[T,S:Type].  T × S ⋂ Unit)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B all: x:A. B[x] prop: unit: Unit
Lemmas referenced :  btrue_neq_bfalse isect2_wf unit_wf2 isect2_decomp isect2_subtype_rel btrue_wf equal_wf isect2_subtype_rel2 bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename independent_pairFormation hypothesis sqequalHypSubstitution productElimination equalityTransitivity equalitySymmetry extract_by_obid independent_functionElimination voidElimination because_Cache isectElimination productEquality cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination universeEquality isect_memberEquality applyEquality equalityElimination

Latex:
\mforall{}[T,S:Type].    (\mneg{}T  \mtimes{}  S  \mcap{}  Unit)



Date html generated: 2018_05_21-PM-10_19_05
Last ObjectModification: 2017_07_26-PM-06_36_50

Theory : eval!all


Home Index