Nuprl Lemma : fpf-dom-list_wf
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> Top].  (fpf-dom-list(f) ∈ {a:A| ↑a ∈ dom(f)}  List)
Proof
Definitions occuring in Statement : 
fpf-dom-list: fpf-dom-list(f), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
set: {x:A| B[x]} , 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fpf: a:A fp-> B[a], 
fpf-dom-list: fpf-dom-list(f), 
fpf-dom: x ∈ dom(f), 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list-set-type, 
subtype_rel_list_set, 
l_member_wf, 
assert_wf, 
deq-member_wf, 
assert-deq-member, 
fpf_wf, 
top_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].    (fpf-dom-list(f)  \mmember{}  \{a:A|  \muparrow{}a  \mmember{}  dom(f)\}    List)
Date html generated:
2018_05_21-PM-09_30_49
Last ObjectModification:
2018_02_09-AM-10_25_17
Theory : finite!partial!functions
Home
Index