Nuprl Lemma : fpf-join-domain
∀[A:Type]. ∀f,g:a:A fp-> Top. ∀eq:EqDecider(A).  fpf-domain(f ⊕ g) ⊆ fpf-domain(f) @ fpf-domain(g)
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-domain: fpf-domain(f), 
fpf: a:A fp-> B[a], 
l_contains: A ⊆ B, 
append: as @ bs, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
l_contains: A ⊆ B, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
or: P ∨ Q
Lemmas referenced : 
l_all_iff, 
fpf-domain_wf, 
fpf-join_wf, 
top_wf, 
l_member_wf, 
append_wf, 
member_append, 
or_wf, 
fpf-domain-join, 
all_wf, 
deq_wf, 
fpf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
setElimination, 
rename, 
setEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}f,g:a:A  fp->  Top.  \mforall{}eq:EqDecider(A).    fpf-domain(f  \moplus{}  g)  \msubseteq{}  fpf-domain(f)  @  fpf-domain(g)
Date html generated:
2018_05_21-PM-09_21_38
Last ObjectModification:
2018_02_09-AM-10_18_22
Theory : finite!partial!functions
Home
Index