Nuprl Lemma : fpf-join-list-domain2
∀[A:Type]. ∀eq:EqDecider(A). ∀L:a:A fp-> Top List. ∀x:A. ((x ∈ fpf-domain(⊕(L)))
⇐⇒ (∃f∈L. (x ∈ fpf-domain(f))))
Proof
Definitions occuring in Statement :
fpf-join-list: ⊕(L)
,
fpf-domain: fpf-domain(f)
,
fpf: a:A fp-> B[a]
,
l_exists: (∃x∈L. P[x])
,
l_member: (x ∈ l)
,
list: T List
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
guard: {T}
Lemmas referenced :
fpf-join-list-dom2,
member-fpf-domain,
fpf-join-list_wf,
top_wf,
l_exists_functionality,
fpf_wf,
assert_wf,
fpf-dom_wf,
l_member_wf,
fpf-domain_wf,
set_wf,
l_exists_wf,
list_wf,
deq_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaFormation,
dependent_functionElimination,
productElimination,
independent_pairFormation,
independent_functionElimination,
sqequalRule,
lambdaEquality,
setElimination,
rename,
setEquality,
because_Cache,
promote_hyp,
universeEquality
Latex:
\mforall{}[A:Type]
\mforall{}eq:EqDecider(A). \mforall{}L:a:A fp-> Top List. \mforall{}x:A.
((x \mmember{} fpf-domain(\moplus{}(L))) \mLeftarrow{}{}\mRightarrow{} (\mexists{}f\mmember{}L. (x \mmember{} fpf-domain(f))))
Date html generated:
2018_05_21-PM-09_22_50
Last ObjectModification:
2018_02_09-AM-10_18_56
Theory : finite!partial!functions
Home
Index