Nuprl Lemma : fpf-join-list-domain2
∀[A:Type]. ∀eq:EqDecider(A). ∀L:a:A fp-> Top List. ∀x:A.  ((x ∈ fpf-domain(⊕(L))) ⇐⇒ (∃f∈L. (x ∈ fpf-domain(f))))
Proof
Definitions occuring in Statement : 
fpf-join-list: ⊕(L), 
fpf-domain: fpf-domain(f), 
fpf: a:A fp-> B[a], 
l_exists: (∃x∈L. P[x]), 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
fpf-join-list-dom2, 
member-fpf-domain, 
fpf-join-list_wf, 
top_wf, 
l_exists_functionality, 
fpf_wf, 
assert_wf, 
fpf-dom_wf, 
l_member_wf, 
fpf-domain_wf, 
set_wf, 
l_exists_wf, 
list_wf, 
deq_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
promote_hyp, 
universeEquality
Latex:
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A).  \mforall{}L:a:A  fp->  Top  List.  \mforall{}x:A.
        ((x  \mmember{}  fpf-domain(\moplus{}(L)))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}f\mmember{}L.  (x  \mmember{}  fpf-domain(f))))
Date html generated:
2018_05_21-PM-09_22_50
Last ObjectModification:
2018_02_09-AM-10_18_56
Theory : finite!partial!functions
Home
Index