Nuprl Lemma : fpf-sub-compatible-left
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]]. f || g supposing f ⊆ g
Proof
Definitions occuring in Statement :
fpf-compatible: f || g
,
fpf-sub: f ⊆ g
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
fpf-compatible: f || g
,
fpf-sub: f ⊆ g
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
top: Top
,
cand: A c∧ B
,
guard: {T}
Lemmas referenced :
assert_wf,
fpf-dom_wf,
subtype-fpf2,
top_wf,
all_wf,
equal_wf,
fpf-ap_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
hypothesis,
productEquality,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
applyEquality,
because_Cache,
lambdaEquality,
functionExtensionality,
independent_isectElimination,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_functionElimination,
axiomEquality,
functionEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[f,g:a:A fp-> B[a]]. f || g supposing f \msubseteq{} g
Date html generated:
2018_05_21-PM-09_20_37
Last ObjectModification:
2018_02_09-AM-10_17_52
Theory : finite!partial!functions
Home
Index