Nuprl Lemma : inverse-letters_wf
∀[X:Type]. ∀[a,b:X + X]. (a = -b ∈ ℙ)
Proof
Definitions occuring in Statement :
inverse-letters: a = -b
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
inverse-letters: a = -b
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
or_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
lambdaEquality,
productEquality,
unionEquality,
because_Cache,
inlEquality,
hypothesis,
inrEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[X:Type]. \mforall{}[a,b:X + X]. (a = -b \mmember{} \mBbbP{})
Date html generated:
2020_05_20-AM-08_21_42
Last ObjectModification:
2017_07_28-AM-09_18_34
Theory : free!groups
Home
Index