Nuprl Lemma : Sudoku_wf

Sudoku() ∈ Type


Proof




Definitions occuring in Statement :  Sudoku: Sudoku() member: t ∈ T universe: Type
Definitions unfolded in proof :  Sudoku: Sudoku() member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} so_apply: x[s] all: x:A. B[x] true: True nequal: a ≠ b ∈  uimplies: supposing a sq_type: SQType(T) guard: {T}
Lemmas referenced :  square-board_wf false_wf le_wf int_seg_wf all_wf equal_wf sudoku-cell_wf subtype_base_sq int_subtype_base equal-wf-base true_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality productEquality lambdaEquality because_Cache functionEquality intEquality applyEquality setElimination rename divideEquality addLevel instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed

Latex:
Sudoku()  \mmember{}  Type



Date html generated: 2017_10_01-AM-09_06_36
Last ObjectModification: 2017_07_26-PM-04_46_35

Theory : general


Home Index