Nuprl Lemma : square-board_wf

[n:ℕ]. ∀[T:Type].  (square-board(n;T) ∈ Type)


Proof




Definitions occuring in Statement :  square-board: square-board(n;T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T square-board: square-board(n;T) and: P ∧ Q nat: prop: so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} ge: i ≥  lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s]
Lemmas referenced :  list_wf equal_wf length_wf all_wf int_seg_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis productEquality intEquality because_Cache setElimination rename natural_numberEquality lambdaEquality independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality universeEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T:Type].    (square-board(n;T)  \mmember{}  Type)



Date html generated: 2017_10_01-AM-09_06_27
Last ObjectModification: 2017_07_26-PM-04_46_34

Theory : general


Home Index