Nuprl Lemma : awf-solution_wf

[A,I:Type].
  ∀G:awf-system{i:l}(I;A)
    (awf-solution(G) ∈ {s:I ⟶ awf(A)| 
                        (∀i:I. ((s i) (G i) ∈ awf(A)))
                        ∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) (G s' i) ∈ awf(A)))  (s' s ∈ (I ⟶ awf(A)))))} )


Proof




Definitions occuring in Statement :  awf-solution: awf-solution(G) awf-system: awf-system{i:l}(I;A) awf: awf(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] unique-corec-solution corec-ext unique-awf awf-solution: awf-solution(G) sq_exists: x:A [B[x]] subtype_rel: A ⊆B implies:  Q and: P ∧ Q
Lemmas referenced :  awf-system_wf unique-awf awf_wf awf-system-subtype unique-corec-solution corec-ext
Rules used in proof :  universeEquality hypothesisEquality cumulativity thin isectElimination extract_by_obid introduction hypothesis sqequalHypSubstitution cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule applyEquality instantiate lambdaEquality_alt equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination isectIsType because_Cache functionIsType universeIsType setIsType productIsType

Latex:
\mforall{}[A,I:Type].
    \mforall{}G:awf-system\{i:l\}(I;A)
        (awf-solution(G)  \mmember{}  \{s:I  {}\mrightarrow{}  awf(A)| 
                                                (\mforall{}i:I.  ((s  i)  =  (G  s  i)))
                                                \mwedge{}  (\mforall{}s':I  {}\mrightarrow{}  awf(A).  ((\mforall{}i:I.  ((s'  i)  =  (G  s'  i)))  {}\mRightarrow{}  (s'  =  s)))\}  )



Date html generated: 2020_05_20-AM-08_19_50
Last ObjectModification: 2020_01_08-AM-11_23_50

Theory : general


Home Index