Nuprl Lemma : unique-awf

[A,I:Type].
  ∀G:awf-system{i:l}(I;A)
    (∃s:I ⟶ awf(A) [((∀i:I. ((s i) (G i) ∈ awf(A)))
                    ∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) (G s' i) ∈ awf(A)))  (s' s ∈ (I ⟶ awf(A))))))])


Proof




Definitions occuring in Statement :  awf-system: awf-system{i:l}(I;A) awf: awf(T) uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  awf-system: awf-system{i:l}(I;A) uall: [x:A]. B[x] all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a implies:  Q subtype_rel: A ⊆B or: P ∨ Q awf: awf(T) and: P ∧ Q prop: cand: c∧ B ext-eq: A ≡ B exists!: !x:T. P[x] exists: x:A. B[x] sq_exists: x:A [B[x]] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  unique-corec-solution list_wf continuous-monotone-union continuous-monotone-constant continuous-monotone-list continuous-monotone-id isect2_subtype_rel3 top_wf subtype_rel_wf awf_wf set_wf corec_wf isect2_wf isect2_decomp corec-ext subtype_rel_self subtype_rel_dep_function equal_wf squash_wf true_wf iff_weakening_equal all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality unionEquality hypothesisEquality hypothesis universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination isect_memberEquality applyEquality instantiate because_Cache cumulativity functionEquality setElimination rename inlFormation equalityTransitivity equalitySymmetry isectEquality setEquality productEquality productElimination independent_pairFormation dependent_set_memberEquality functionExtensionality dependent_set_memberFormation imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,I:Type].
    \mforall{}G:awf-system\{i:l\}(I;A)
        (\mexists{}s:I  {}\mrightarrow{}  awf(A)  [((\mforall{}i:I.  ((s  i)  =  (G  s  i)))
                                        \mwedge{}  (\mforall{}s':I  {}\mrightarrow{}  awf(A).  ((\mforall{}i:I.  ((s'  i)  =  (G  s'  i)))  {}\mRightarrow{}  (s'  =  s))))])



Date html generated: 2019_10_15-AM-11_33_46
Last ObjectModification: 2018_08_21-AM-01_09_23

Theory : general


Home Index