Nuprl Lemma : unique-awf
∀[A,I:Type].
  ∀G:awf-system{i:l}(I;A)
    (∃s:I ⟶ awf(A) [((∀i:I. ((s i) = (G s i) ∈ awf(A)))
                    ∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) = (G s' i) ∈ awf(A))) 
⇒ (s' = s ∈ (I ⟶ awf(A))))))])
Proof
Definitions occuring in Statement : 
awf-system: awf-system{i:l}(I;A)
, 
awf: awf(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
awf-system: awf-system{i:l}(I;A)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
awf: awf(T)
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
ext-eq: A ≡ B
, 
exists!: ∃!x:T. P[x]
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
unique-corec-solution, 
list_wf, 
continuous-monotone-union, 
continuous-monotone-constant, 
continuous-monotone-list, 
continuous-monotone-id, 
isect2_subtype_rel3, 
top_wf, 
subtype_rel_wf, 
awf_wf, 
set_wf, 
corec_wf, 
isect2_wf, 
isect2_decomp, 
corec-ext, 
subtype_rel_self, 
subtype_rel_dep_function, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
applyEquality, 
instantiate, 
because_Cache, 
cumulativity, 
functionEquality, 
setElimination, 
rename, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
setEquality, 
productEquality, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
dependent_set_memberFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,I:Type].
    \mforall{}G:awf-system\{i:l\}(I;A)
        (\mexists{}s:I  {}\mrightarrow{}  awf(A)  [((\mforall{}i:I.  ((s  i)  =  (G  s  i)))
                                        \mwedge{}  (\mforall{}s':I  {}\mrightarrow{}  awf(A).  ((\mforall{}i:I.  ((s'  i)  =  (G  s'  i)))  {}\mRightarrow{}  (s'  =  s))))])
Date html generated:
2019_10_15-AM-11_33_46
Last ObjectModification:
2018_08_21-AM-01_09_23
Theory : general
Home
Index