Nuprl Lemma : unique-corec-solution
∀[F:Type ⟶ Type]
  ∀[I:Type]
    ∀G:⋂T:{T:Type| (F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ F[T])
      ∃!s:I ⟶ corec(T.F[T]). (s = (G s) ∈ (I ⟶ corec(T.F[T]))) 
  supposing ContinuousMonotone(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
exists!: ∃!x:T. P[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
type-continuous: Continuous(T.F[T])
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
cand: A c∧ B
, 
istype: istype(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
exists!: ∃!x:T. P[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
indexed-F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation (indexed I)
Lemmas referenced : 
subtype_rel_wf, 
nat_wf, 
corec-ext, 
corec_wf, 
subtype_rel_dep_function, 
continuous-monotone_wf, 
fix_wf_corec_system, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
indexed-coinduction-principle, 
all_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
universeEquality, 
Error :functionIsType, 
rename, 
Error :lambdaFormation_alt, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
Error :productIsType, 
functionEquality, 
cumulativity, 
functionExtensionality, 
Error :isectIsType, 
Error :setIsType, 
setElimination, 
Error :dependent_pairFormation_alt, 
Error :functionExtensionality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
Error :equalityIsType1, 
productEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[I:Type]
        \mforall{}G:\mcap{}T:\{T:Type|  (F[T]  \msubseteq{}r  T)  \mwedge{}  (corec(T.F[T])  \msubseteq{}r  T)\}  .  ((I  {}\mrightarrow{}  T)  {}\mrightarrow{}  I  {}\mrightarrow{}  F[T])
            \mexists{}!s:I  {}\mrightarrow{}  corec(T.F[T]).  (s  =  (G  s)) 
    supposing  ContinuousMonotone(T.F[T])
Date html generated:
2019_06_20-PM-00_37_32
Last ObjectModification:
2018_10_01-AM-10_05_11
Theory : co-recursion
Home
Index