Nuprl Lemma : indexed-coinduction-principle
∀[I:Type]. ∀[F:Type ⟶ Type].
  ∀[R:(I ⟶ corec(T.F[T])) ⟶ (I ⟶ corec(T.F[T])) ⟶ ℙ]
    ∀[x,y:I ⟶ corec(T.F[T])].  x = y ∈ (I ⟶ corec(T.F[T])) supposing R[x;y] 
    supposing x,y.R[x;y] is an T.F[T]-bisimulation (indexed I) 
  supposing ContinuousMonotone(T.F[T])
Proof
Definitions occuring in Statement : 
indexed-F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation (indexed I)
, 
corec: corec(T.F[T])
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
corec: corec(T.F[T])
, 
indexed-F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation (indexed I)
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
nat_wf, 
equal_wf, 
and_wf, 
le_weakening2, 
primrec_wf, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-swap, 
le-add-cancel, 
istype-le, 
top_wf, 
int_seg_wf, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
istype-int, 
add-zero, 
add-commutes, 
le-add-cancel2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
primrec0_lemma, 
istype-void, 
subtype_rel_self, 
subtract-1-ge-0, 
istype-nat, 
indexed-F-bisimulation_wf, 
corec_wf, 
continuous-monotone_wf, 
istype-universe
Rules used in proof : 
lambdaEquality, 
functionEquality, 
dependent_set_memberEquality, 
isect_memberEquality, 
functionExtensionality, 
isect_memberFormation, 
independent_pairEquality, 
Error :isectIsType, 
closedConclusion, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
imageElimination, 
minusEquality, 
Error :productIsType, 
applyLambdaEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
addEquality, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
cumulativity, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
Error :functionIsTypeImplies, 
Error :functionExtensionality_alt, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :universeIsType, 
extract_by_obid, 
Error :lambdaEquality_alt, 
applyEquality, 
because_Cache, 
Error :functionIsType, 
independent_isectElimination, 
universeEquality, 
instantiate
Latex:
\mforall{}[I:Type].  \mforall{}[F:Type  {}\mrightarrow{}  Type].
    \mforall{}[R:(I  {}\mrightarrow{}  corec(T.F[T]))  {}\mrightarrow{}  (I  {}\mrightarrow{}  corec(T.F[T]))  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}[x,y:I  {}\mrightarrow{}  corec(T.F[T])].    x  =  y  supposing  R[x;y] 
        supposing  x,y.R[x;y]  is  an  T.F[T]-bisimulation  (indexed  I) 
    supposing  ContinuousMonotone(T.F[T])
Date html generated:
2019_06_20-PM-01_05_24
Last ObjectModification:
2019_06_20-PM-00_59_24
Theory : co-recursion
Home
Index