Nuprl Lemma : awf-subtype
∀[T:Type]. ∀[s:awf(T)].  (s ∈ T + (awf(T) List))
Proof
Definitions occuring in Statement : 
awf: awf(T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
awf: awf(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
corec-ext, 
list_wf, 
continuous-monotone-union, 
continuous-monotone-constant, 
continuous-monotone-list, 
continuous-monotone-id, 
subtype_rel_weakening, 
corec_wf, 
awf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[s:awf(T)].    (s  \mmember{}  T  +  (awf(T)  List))
Date html generated:
2016_05_15-PM-07_24_26
Last ObjectModification:
2015_12_27-AM-11_24_36
Theory : general
Home
Index