Nuprl Lemma : awf-subtype

[T:Type]. ∀[s:awf(T)].  (s ∈ (awf(T) List))


Proof




Definitions occuring in Statement :  awf: awf(T) list: List uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T awf: awf(T) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  corec-ext list_wf continuous-monotone-union continuous-monotone-constant continuous-monotone-list continuous-monotone-id subtype_rel_weakening corec_wf awf_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin sqequalRule lambdaEquality unionEquality hypothesisEquality hypothesis universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[s:awf(T)].    (s  \mmember{}  T  +  (awf(T)  List))



Date html generated: 2016_05_15-PM-07_24_26
Last ObjectModification: 2015_12_27-AM-11_24_36

Theory : general


Home Index