Nuprl Lemma : can-apply-mu'

[A:Type]. ∀P:A ⟶ ℕ ⟶ 𝔹. ∀d:∀x:A. Dec(∃n:ℕ(↑(P n))). ∀x:A.  (↑can-apply(mu'(P);x) ⇐⇒ ∃n:ℕ(↑(P n)))


Proof




Definitions occuring in Statement :  mu': mu'(P) can-apply: can-apply(f;x) nat: assert: b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] mu': mu'(P) can-apply: can-apply(f;x) p-mu-decider member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B implies:  Q exists: x:A. B[x] pi1: fst(t) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt p-mu: p-mu(P;x) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q true: True bfalse: ff false: False uiff: uiff(P;Q) uimplies: supposing a not: ¬A
Lemmas referenced :  all_wf decidable_wf exists_wf nat_wf assert_wf bool_wf p-mu-decider top_wf p-mu_wf true_wf false_wf not_over_exists equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesis applyEquality functionEquality universeEquality instantiate equalityTransitivity equalitySymmetry isectEquality cumulativity unionEquality functionExtensionality because_Cache productElimination unionElimination independent_pairFormation dependent_pairFormation natural_numberEquality voidElimination independent_isectElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[A:Type]
    \mforall{}P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}d:\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n))).  \mforall{}x:A.    (\muparrow{}can-apply(mu'(P);x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n)))



Date html generated: 2018_05_21-PM-06_29_49
Last ObjectModification: 2018_05_19-PM-04_40_29

Theory : general


Home Index