Nuprl Lemma : p-mu_wf

[P:ℕ ⟶ 𝔹]. ∀[x:ℕ Top].  (p-mu(P;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  p-mu: p-mu(P;x) nat: bool: 𝔹 uall: [x:A]. B[x] top: Top prop: member: t ∈ T function: x:A ⟶ B[x] union: left right
Definitions unfolded in proof :  p-mu: p-mu(P;x) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  assert_wf all_wf int_seg_wf not_wf int_seg_subtype_nat false_wf nat_wf top_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut unionElimination thin productEquality lemma_by_obid sqequalHypSubstitution isectElimination applyEquality hypothesisEquality hypothesis natural_numberEquality setElimination rename lambdaEquality because_Cache independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry unionEquality isect_memberEquality functionEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}  +  Top].    (p-mu(P;x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_32_43
Last ObjectModification: 2015_12_27-PM-01_11_44

Theory : general


Home Index