Nuprl Lemma : p-mu_wf
∀[P:ℕ ⟶ 𝔹]. ∀[x:ℕ + Top].  (p-mu(P;x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
p-mu: p-mu(P;x)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
Definitions unfolded in proof : 
p-mu: p-mu(P;x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_wf, 
all_wf, 
int_seg_wf, 
not_wf, 
int_seg_subtype_nat, 
false_wf, 
nat_wf, 
top_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
unionElimination, 
thin, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}  +  Top].    (p-mu(P;x)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-03_32_43
Last ObjectModification:
2015_12_27-PM-01_11_44
Theory : general
Home
Index