Nuprl Lemma : continuous'-monotone-sum
∀[F,G:Type ⟶ Type].
(continuous'-monotone{i:l}(T.F[T] + G[T])) supposing
(continuous'-monotone{i:l}(T.G[T]) and
continuous'-monotone{i:l}(T.F[T]))
Proof
Definitions occuring in Statement :
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
so_apply: x[s]
,
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
cand: A c∧ B
,
type-monotone: Monotone(T.F[T])
,
subtype_rel: A ⊆r B
,
type-continuous': semi-continuous(λT.F[T])
,
so_lambda: λ2x.t[x]
,
type-incr-chain: type-incr-chain{i:l}()
,
tunion: ⋃x:A.B[x]
,
pi2: snd(t)
,
prop: ℙ
Lemmas referenced :
type-continuous'_wf,
type-monotone_wf,
and_wf,
type-incr-chain_wf,
nat_wf,
tunion_wf,
subtype_rel_union,
subtype_rel_wf,
subtype_rel_sum
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
isectElimination,
applyEquality,
hypothesisEquality,
independent_isectElimination,
hypothesis,
axiomEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
universeEquality,
independent_pairFormation,
lambdaEquality,
setElimination,
rename,
unionElimination,
imageElimination,
imageMemberEquality,
dependent_pairEquality,
inlEquality,
unionEquality,
baseClosed,
inrEquality,
independent_pairEquality,
instantiate,
functionEquality
Latex:
\mforall{}[F,G:Type {}\mrightarrow{} Type].
(continuous'-monotone\{i:l\}(T.F[T] + G[T])) supposing
(continuous'-monotone\{i:l\}(T.G[T]) and
continuous'-monotone\{i:l\}(T.F[T]))
Date html generated:
2016_05_15-PM-06_53_25
Last ObjectModification:
2016_01_16-AM-09_49_02
Theory : general
Home
Index