Nuprl Lemma : eq_bool_tt
∀[b:𝔹]. b =b tt = b
Proof
Definitions occuring in Statement :
eq_bool: p =b q
,
btrue: tt
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
guard: {T}
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
Lemmas referenced :
iff_imp_equal_bool,
eq_bool_wf,
btrue_wf,
subtype_base_sq,
bool_wf,
bool_subtype_base,
equal_wf,
assert_wf,
true_wf,
assert_of_eq_bool,
iff_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
instantiate,
cumulativity,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
natural_numberEquality,
sqequalRule,
addLevel,
productElimination,
impliesFunctionality,
because_Cache
Latex:
\mforall{}[b:\mBbbB{}]. b =b tt = b
Date html generated:
2016_05_15-PM-03_26_12
Last ObjectModification:
2015_12_27-PM-01_07_21
Theory : general
Home
Index