Nuprl Lemma : fix-connected
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ T].
  ∀[x,y:T].  f**(x) = f**(y) ∈ T supposing x is f*(y) supposing retraction(T;f)
Proof
Definitions occuring in Statement : 
fix: f**(x)
, 
retraction: retraction(T;f)
, 
fun-connected: y is f*(x)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fun-connected_wf, 
retraction_wf, 
fun-connected-induction, 
equal_wf, 
fix_wf, 
not_wf, 
squash_wf, 
true_wf, 
fix-step, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}[x,y:T].    f**(x)  =  f**(y)  supposing  x  is  f*(y)  supposing  retraction(T;f)
Date html generated:
2018_05_21-PM-07_47_16
Last ObjectModification:
2017_07_26-PM-05_24_49
Theory : general
Home
Index