Nuprl Lemma : fix-connected

[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ T].
  ∀[x,y:T].  f**(x) f**(y) ∈ supposing is f*(y) supposing retraction(T;f)


Proof




Definitions occuring in Statement :  fix: f**(x) retraction: retraction(T;f) fun-connected: is f*(x) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  fun-connected_wf retraction_wf fun-connected-induction equal_wf fix_wf not_wf squash_wf true_wf fix-step iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination extract_by_obid isectElimination cumulativity functionExtensionality applyEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry lambdaEquality independent_isectElimination lambdaFormation hyp_replacement applyLambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}[x,y:T].    f**(x)  =  f**(y)  supposing  x  is  f*(y)  supposing  retraction(T;f)



Date html generated: 2018_05_21-PM-07_47_16
Last ObjectModification: 2017_07_26-PM-05_24_49

Theory : general


Home Index