Nuprl Lemma : fix-step
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ T]. ∀[x:T]. f**(f x) = f**(x) ∈ T supposing retraction(T;f)
Proof
Definitions occuring in Statement :
fix: f**(x)
,
retraction: retraction(T;f)
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
implies: P
⇒ Q
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
fix: f**(x)
,
ycomb: Y
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
eqof: eqof(d)
,
deq: EqDecider(T)
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
Lemmas referenced :
retraction_wf,
equal_wf,
squash_wf,
true_wf,
fix_wf,
deq_wf,
iff_weakening_equal,
eqof_wf,
bool_wf,
eqtt_to_assert,
safe-assert-deq,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
assert_wf,
bnot_wf,
not_wf,
bool_cases,
iff_transitivity,
iff_weakening_uiff,
assert_of_bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
functionExtensionality,
applyEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
lambdaEquality,
imageElimination,
universeEquality,
independent_isectElimination,
functionEquality,
imageMemberEquality,
baseClosed,
natural_numberEquality,
productElimination,
independent_functionElimination,
unionElimination,
equalityElimination,
setElimination,
rename,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
voidElimination,
independent_pairFormation,
impliesFunctionality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[f:T {}\mrightarrow{} T]. \mforall{}[x:T]. f**(f x) = f**(x) supposing retraction(T;f)
Date html generated:
2018_05_21-PM-07_47_07
Last ObjectModification:
2017_07_26-PM-05_24_39
Theory : general
Home
Index