Nuprl Lemma : fix-step
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ T]. ∀[x:T].  f**(f x) = f**(x) ∈ T supposing retraction(T;f)
Proof
Definitions occuring in Statement : 
fix: f**(x)
, 
retraction: retraction(T;f)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
fix: f**(x)
, 
ycomb: Y
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
eqof: eqof(d)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
retraction_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fix_wf, 
deq_wf, 
iff_weakening_equal, 
eqof_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
lambdaEquality, 
imageElimination, 
universeEquality, 
independent_isectElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
setElimination, 
rename, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].    f**(f  x)  =  f**(x)  supposing  retraction(T;f)
Date html generated:
2018_05_21-PM-07_47_07
Last ObjectModification:
2017_07_26-PM-05_24_39
Theory : general
Home
Index