Nuprl Lemma : fseg_cons

[T:Type]. ∀x:T. ∀[L:T List]. fseg(T;L;[x L])


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop:
Lemmas referenced :  cons_wf nil_wf list_ind_cons_lemma list_ind_nil_lemma equal_wf list_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[L:T  List].  fseg(T;L;[x  /  L])



Date html generated: 2016_05_15-PM-03_34_24
Last ObjectModification: 2015_12_27-PM-01_13_26

Theory : general


Home Index