Nuprl Lemma : fseg_cons
∀[T:Type]. ∀x:T. ∀[L:T List]. fseg(T;L;[x / L])
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
Lemmas referenced : 
cons_wf, 
nil_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
equal_wf, 
list_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[L:T  List].  fseg(T;L;[x  /  L])
Date html generated:
2016_05_15-PM-03_34_24
Last ObjectModification:
2015_12_27-PM-01_13_26
Theory : general
Home
Index