Nuprl Lemma : fun-connected-to-same

[T:Type]
  ∀f:T ⟶ T
    (retraction(T;f)
     (∀x,y:T.  Dec(x y ∈ T))
     (∀x,z:T.  (x is f*(z)  (∀y:T. (y is f*(z)  (x is f*(y) ∨ is f*(x)))))))


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-connected: is f*(x) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] prop: so_apply: x[s] so_apply: x[s1;s2] guard: {T} or: P ∨ Q uimplies: supposing a not: ¬A false: False decidable: Dec(P)
Lemmas referenced :  fun-connected-induction all_wf fun-connected_wf or_wf equal_wf not_wf decidable_wf retraction_wf fun-connected_transitivity fun-connected-step fun-connected-step-back
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality cumulativity functionEquality functionExtensionality applyEquality hypothesis independent_functionElimination inrFormation because_Cache axiomEquality rename voidElimination universeEquality unionElimination inlFormation equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality independent_isectElimination

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (retraction(T;f)
        {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))
        {}\mRightarrow{}  (\mforall{}x,z:T.    (x  is  f*(z)  {}\mRightarrow{}  (\mforall{}y:T.  (y  is  f*(z)  {}\mRightarrow{}  (x  is  f*(y)  \mvee{}  y  is  f*(x)))))))



Date html generated: 2018_05_21-PM-07_48_44
Last ObjectModification: 2017_07_26-PM-05_26_29

Theory : general


Home Index