Nuprl Lemma : fun-connected-to-same
∀[T:Type]
  ∀f:T ⟶ T
    (retraction(T;f)
    
⇒ (∀x,y:T.  Dec(x = y ∈ T))
    
⇒ (∀x,z:T.  (x is f*(z) 
⇒ (∀y:T. (y is f*(z) 
⇒ (x is f*(y) ∨ y is f*(x)))))))
Proof
Definitions occuring in Statement : 
retraction: retraction(T;f)
, 
fun-connected: y is f*(x)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
decidable: Dec(P)
Lemmas referenced : 
fun-connected-induction, 
all_wf, 
fun-connected_wf, 
or_wf, 
equal_wf, 
not_wf, 
decidable_wf, 
retraction_wf, 
fun-connected_transitivity, 
fun-connected-step, 
fun-connected-step-back
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
inrFormation, 
because_Cache, 
axiomEquality, 
rename, 
voidElimination, 
universeEquality, 
unionElimination, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (retraction(T;f)
        {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))
        {}\mRightarrow{}  (\mforall{}x,z:T.    (x  is  f*(z)  {}\mRightarrow{}  (\mforall{}y:T.  (y  is  f*(z)  {}\mRightarrow{}  (x  is  f*(y)  \mvee{}  y  is  f*(x)))))))
Date html generated:
2018_05_21-PM-07_48_44
Last ObjectModification:
2017_07_26-PM-05_26_29
Theory : general
Home
Index