Nuprl Lemma : injection-inverse2
∀n:ℕ. ∀f:ℕn →⟶ ℕn.  ∃g:ℕn →⟶ ℕn. ((∀a:ℕn. ((g (f a)) = a ∈ ℕn)) ∧ (∀a:ℕn. ((f (g a)) = a ∈ ℕn)))
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
injection: A →⟶ B
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
inject: Inj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
injection-bijection, 
injection_wf, 
int_seg_wf, 
nat_wf, 
biject-inverse, 
all_wf, 
equal_wf, 
inject_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    \mexists{}g:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.  ((\mforall{}a:\mBbbN{}n.  ((g  (f  a))  =  a))  \mwedge{}  (\mforall{}a:\mBbbN{}n.  ((f  (g  a))  =  a)))
Date html generated:
2018_05_21-PM-08_16_20
Last ObjectModification:
2017_07_26-PM-05_50_32
Theory : general
Home
Index