Nuprl Lemma : injection-inverse2

n:ℕ. ∀f:ℕn →⟶ ℕn.  ∃g:ℕn →⟶ ℕn. ((∀a:ℕn. ((g (f a)) a ∈ ℕn)) ∧ (∀a:ℕn. ((f (g a)) a ∈ ℕn)))


Proof




Definitions occuring in Statement :  injection: A →⟶ B int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: injection: A →⟶ B implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] inject: Inj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  injection-bijection injection_wf int_seg_wf nat_wf biject-inverse all_wf equal_wf inject_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination natural_numberEquality setElimination rename hypothesis because_Cache independent_functionElimination productElimination dependent_pairFormation independent_pairFormation productEquality sqequalRule lambdaEquality applyEquality dependent_set_memberEquality functionExtensionality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    \mexists{}g:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.  ((\mforall{}a:\mBbbN{}n.  ((g  (f  a))  =  a))  \mwedge{}  (\mforall{}a:\mBbbN{}n.  ((f  (g  a))  =  a)))



Date html generated: 2018_05_21-PM-08_16_20
Last ObjectModification: 2017_07_26-PM-05_50_32

Theory : general


Home Index