Nuprl Lemma : inr_equal
∀[A,B:Type]. ∀[x,y:B].  uiff((inr x ) = (inr y ) ∈ (A + B);x = y ∈ B)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
outr: outr(x)
, 
prop: ℙ
, 
isl: isl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
assert: ↑b
, 
btrue: tt
, 
true: True
Lemmas referenced : 
and_wf, 
equal_wf, 
outr_wf, 
assert_wf, 
bnot_wf, 
isl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
hypothesisEquality, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
equalityTransitivity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
natural_numberEquality, 
setEquality, 
cumulativity, 
inrEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:B].    uiff((inr  x  )  =  (inr  y  );x  =  y)
Date html generated:
2016_10_25-AM-10_50_40
Last ObjectModification:
2016_07_12-AM-06_59_31
Theory : general
Home
Index